conditions such as men with LUTS. The implementation of ANP-led LUTS clinics can reduce waiting time from GP referral and the need for urology out-patient attendance.

Methods: New patients were triaged by consultant urologists using agreed OSPIP criteria and key performance indicators. An extensive review of long waiting return patients was undertaken by a consultant urologist and appropriate patients were also triaged for review in the ANP-led clinic. The aim was to manage as many as possible “virtually” using IPSS and proforma questionnaires using an electronic database.

Results: 596 patients were reviewed via telephone assessment over six months. After the initial assessment, (389) 65% were discharged following lifestyle advice/education. 135 (22.5%) required lifestyle review or pharmacological modification. For 51 (8.5%) patients, a physical assessment was necessary. 21 (3.5%) were referred back to urology for various reasons (raised PSA, frank haematuria, need for flexible cystoscopy).

Conclusion: During the Covid era, introduction of an ANP-led male LUTS clinic has dramatically reduced the numbers requiring initial and return attendance to urology outpatient clinics. Further work will be carried out in relation to patient satisfaction, GP education and expanding the ANP workforce.

References

Abstract 14

Mechanisms of promoting safer intrarenal pressure during flexible ureteroscopy

Eoin MacCraith1, Lee C. Yap1, Mutaz Elamin1, Kenneth Patterson1, Ciaran M. Brady1, Derek B. Hennessey1
1Mercy University Hospital, Cork, Ireland

Introduction: Elevated intrarenal pressure (IRP) during flexible ureteroscopy (FURS) is a predictor of postoperative complications. The aim of this study is to evaluate IRP during FURS in a porcine kidney model in order to determine the safest combination of irrigation device, ureteral access sheath (UAS) and ureteroscope.

Methods: Urinary tracts were harvested from Landrace pigs slaughtered for the food chain. Two flexible ureteroscopes, 8.7Fr and 9.5Fr were evaluated. Irrigation systems evaluated included: TraxerFlow™ (Rocamed, France), SAPSTM single action pumping system (Boston Scientific, USA), Pathfinder Plus™ (Utah Medical, USA), and a manual “bag squeeze”. This experiment was conducted with no UAS, followed by an 11/13Fr UAS and then a 12/14Fr UAS. IRPs were measured in the prepared porcine kidney during all possible combinations of scope, UAS and irrigation system.

Results: Pressures were significantly reduced when using 12/14Fr UAS compared to 11/13Fr UAS (p = 0.006) and when using 11/13Fr UAS compared to no UAS (p = 0.02). Pressures were significantly reduced with the 8.7Fr scope compared to the 9.5Fr scope (p = 0.001). SAPSTM generates significantly greater IRP than TraxerFlow™, Pathfinder Plus™ and a “bag squeeze” (p < 0.05). The most dangerous combination was using the SAPSTM, no UAS and larger ureteroscope leading to an IRP of 100.6 ± 16.1 cmH2O. The safest combination was using Pathfinder Plus™ with a 12/14Fr UAS and smaller ureteroscope giving an IRP of 11.6 ± 3.65 cmH2O.

Conclusion: In order to maintain safe IRPs during FURS urologists should use large UAS, narrow ureteroscopes and be cautious in selection of an irrigation device.